Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38004587

ABSTRACT

Determining the influence of environmental factors on the stability of drugs is very helpful when choosing excipients, storage conditions or packaging materials. In addition, information about possible toxic degradation products enables detecting and avoiding the harmful side effects of the drug. We used the thin-layer chromatographic-densitometric procedure for the assay of five coxibs, conducted degradation studies in various environments and at different temperatures along with the determination of pharmacokinetic parameters. The results were subjected to chemometric analysis, to investigate and visualize the similarities and differences of the studied coxibs. Samples of the tested drug were also analyzed by UPLC-MS/MS in order to identify degradation products, and determine possible drug degradation pathways. Using the human liver cancer HepG2 cell line, the hepatotoxic effect of the degradation products was also determined. It was observed that all substances were relatively stable under the analyzed conditions and degraded more in acidic than alkaline environments. Robenacoxib is the drug that decomposes the fastest, and cimicoxib turned out to be the most stable. Robenacoxib also showed significant hepatotoxicity at the highest tested concentration, which correlates with the high degree of its degradation, and the probable formation of a more hepatoxic product. The obtained mass spectra of compounds formed as a result of hydrolysis of the protonated drug leading to the formation of several product ions, which enabled us to propose probable degradation pathways.

2.
Plants (Basel) ; 12(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37571024

ABSTRACT

Black-eyed Susan (Rudbeckia hirta L.), a flowering plant with various traditional medicinal uses, has recently garnered interest for its therapeutic properties. However, little is known about the potential therapeutic activities of the plant species. The current study focused on conducting a comprehensive investigation into the chemical composition and bioactivity of black-eyed Susan cultivated in Romania. Untargeted metabolite profiling and UHPLC-HR-MS phytochemical analysis of the studied extract revealed the presence of more than 250 compounds pertaining to different classes, including sesquiterpene lactones, polyphenolic acids, flavonoids, amino acids, and fatty acids. The tested extract exhibited inhibitory activity against Gram-positive bacteria and showed promising antifungal activity. It also demonstrated potent antioxidant properties through iron chelation and 15-LOX inhibition capacities, as well as inhibition of cell growth, particularly on the MCF-7 cell line, suggesting potential anticancer effects. Therefore, current research provides valuable information on the antioxidant, antimicrobial, and antitumor potential of Rudbeckia hirta flowers. Implicitly, the discovery of such a wide range of biosubstances, together with the biological activity observed for the studied extract in these preliminary in vitro studies, paves the way for future investigation of the potential application of the plant in the pharmaceutical and nutraceutical sectors.

3.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513292

ABSTRACT

Based on the literature data from 1973 to 2022, this work summarizes reports on spiro-flavonoids with a spiro-carbon at the center of their structure and how this affects their isolation methods, stereochemistry, and biological activity. The review collects 65 unique structures, including spiro-biflavonoids, spiro-triflavonoids, spiro-tetraflavonoids, spiro-flavostilbenoids, and scillascillin-type homoisoflavonoids. Scillascillin-type homoisoflavonoids comprise spiro[bicyclo[4.2.0]octane-7,3'-chromane]-1(6),2,4-trien-4'-one, while the other spiro-flavonoids contain either 2H,2'H-3,3'-spirobi[benzofuran]-2-one or 2'H,3H-2,3'-spirobi[benzofuran]-3-one in the core of their structures. Spiro-flavonoids have been described in more than 40 species of eight families, including Asparagaceae, Cistaceae, Cupressaceae, Fabaceae, Pentaphylacaceae, Pinaceae, Thymelaeaceae, and Vitaceae. The possible biosynthetic pathways for each group of spiro-flavonoids are summarized in detail. Anti-inflammatory and anticancer activities are the most important biological activities of spiro-flavonoids, both in vitro and in vivo. Our work identifies the most promising natural sources, the existing challenges in assigning the stereochemistry of these compounds, and future research perspectives.


Subject(s)
Benzofurans , Biflavonoids , Humans , Flavonoids/pharmacology , Plant Extracts/chemistry , Benzofurans/chemistry , Anti-Inflammatory Agents/pharmacology
4.
Food Chem ; 427: 136677, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37390739

ABSTRACT

Wild edible plants (WEP) are part of the Mediterranean culinary culture and can be used as famine foods in times of severe food shortages. Urospermum picroides is a WEP that grows under harsh conditions and represents an opportunity to expand and diversify the global food supply. However, little is known about its chemical profile. In this study, liquid chromatography coupled to HRESIMS allowed the identification of 77 metabolites in U. picroides extract, among which 12 sesquiterpene-amino acid conjugates are reported here for the first time. Due to the novelty of these conjugates, GNPS molecular networking was used to provide information on their fragmentation pathway. Further, the sesquiterpene enriched U. picroides extract showed a moderate anti-inflammatory effect in LPS-stimulated THP1-macrophages by increasing IL-10 secretion while decreasing pro-inflammatory IL-6 secretion at 50 µg/mL. Our study provides evidence for the potential use of U. picroides as an anti-inflammatory functional food and nutraceutical agent.


Subject(s)
Asteraceae , Sesquiterpenes , Functional Food , Asteraceae/chemistry , Plants, Edible/chemistry , Plant Extracts/chemistry , Anti-Inflammatory Agents
5.
J Pharm Biomed Anal ; 234: 115529, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37364450

ABSTRACT

Petasites hybridus L. (butterbur, Asteraceae) is a well-known medicinal plant traditionally used as a remedy for neurological, respiratory, cardiovascular, and gastrointestinal disorders. Eremophilane-type sesquiterpenes (petasins) are considered to be the major bioactive constituents of butterbur. However, efficient methods to isolate high-purity petasins in sufficient amounts for further analytical and biological testing are lacking. In this study, various sesquiterpenes were separated from a methanol rootstock extract of P. hybridus with liquid-liquid chromatography (LLC). The appropriate biphasic solvent system was selected using the predictive thermodynamic model COSMO-RS and shake-flask experiments. After the selection of the feed (extract) concentration and operating flow rate, a batch LLC experiment was performed with n-hexane/ethyl acetate/methanol/water 5/1/5/1 (v/v/v/v). For those LLC fractions containing petasin derivatives with purities < 95%, a preparative high-performance liquid chromatography purification step followed. All isolated compounds were identified by state-of-the-art spectroscopic methods, i.e., liquid chromatography coupled with high-resolution tandem mass spectrometry and nuclear magnetic resonance techniques. As a result, six compounds were obtained, namely 8ß-hydroxyeremophil-7(11)-en-12,8-olide, 2-[(angeloyl)oxy]eremophil-7(11)-en-12,8-olide, 8α/ß-H-eremophil-7(11)-en-12,8-olide, neopetasin, petasin, and isopetasin. The isolated petasins can be further used as reference materials for standardization and pharmacological evaluation.


Subject(s)
Asteraceae , Petasites , Sesquiterpenes , Petasites/chemistry , Tandem Mass Spectrometry , Methanol , Sesquiterpenes/analysis , Chromatography, Liquid , Asteraceae/chemistry , Magnetic Resonance Spectroscopy , Plant Extracts/pharmacology
6.
Molecules ; 28(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770841

ABSTRACT

Fungi from the genus Diaporthe have been reported as plant pathogens, endophytes, and saprophytes on a wide range of host plants worldwide. Their precise identification is problematic since many Diaporthe species can colonize a single host plant, whereas the same Diaporthe species can inhabit many hosts. Recently, Diaporthe has been proven to be a rich source of bioactive secondary metabolites. In our initial study, 40 Diaporthe isolates were analyzed for their metabolite production. A total of 153 compounds were identified based on their spectroscopic properties-Ultraviolet-visible and mass spectrometry. From these, 43 fungal metabolites were recognized as potential chemotaxonomic markers, mostly belonging to the drimane sesquiterpenoid-phthalide hybrid class. This group included mainly phytotoxic compounds such as cyclopaldic acid, altiloxin A, B, and their derivatives. To the best of our knowledge, this is the first report on the metabolomic studies on Diaporthe eres species complex from fruit trees in the South-Eastern Poland. The results from our study may provide the basis for the future research on the isolation of identified metabolites and on their bioactive potential for agricultural applications as biopesticides or biofertilizers.


Subject(s)
Ascomycota , Saccharomycetales , Trees , Fruit , Poland , Ascomycota/chemistry , Plants
7.
Food Chem ; 412: 135587, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36739726

ABSTRACT

Ochradenus baccatus Delile (Resedaceae) is a desert plant with edible fruits native to the Middle East. Few investigators have reported antibacterial, antiparasitic and anti-cancer activities of the plant. Herein we evaluated the cytotoxic activity of O. baccatus using four cell lines and a zebrafish embryo model. Additionally, liquid chromatography coupled with mass spectroscopy was performed to characterize the extract's main constituents. The highest cytotoxicity was observed against human cervical adenocarcinoma (HeLa), with CC50 of 39.1 µg/mL and a selectivity index (SI) of 7.23 (p < 0.01). Metabolic analysis of the extract resulted in the annotation of 57 metabolites, including fatty acids, flavonoids, glucosinolates, nitrile glycosides, in addition to organic acids. The extract showed an abundance of hydroxylated fatty acids (16 peaks). Further, 3 nitrile glycosides have been identified for the first time in Ochradenus sp., in addition to 2 glucosinolates. These identified phytochemicals may partially explain the cytotoxic activity of the extract. We propose O. baccatus as a possible safe food source for further utilization to partially contribute to the increasing food demand specially in Saharan countries.


Subject(s)
Resedaceae , Animals , Humans , Resedaceae/metabolism , Glucosinolates/metabolism , Chromatography, High Pressure Liquid , Zebrafish/metabolism , Plants/metabolism , Plant Extracts/chemistry , Flavonoids/metabolism , Glycosides/metabolism
8.
Phytochemistry ; 207: 113584, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36603655

ABSTRACT

The absolute configurations of the known but unusual spiro-flavostilbenoids found in the bark of Yucca schidigera Roezl ex Ortgies, were determined by applying time-dependent density functional theory simulation of electronic circular dichroism spectra. The absolute configurations obtained were as follows: (2S,3R) for yuccaol A, yuccaol D and yuccalide A; (2S,3S) for yuccaol B, yuccaol C and yuccaol E; (2S,3S,2'S,3'S) for gloriosaol A; (2S,3R,2'S,3'R) for gloriosaol C; (2S,3S,2'S,3'R) for gloriosaol D; (2S,3R,2'S,3'S) for gloriosaol E. These findings indicate that the compounds are all biosynthetic derivatives either of (2R)-naringenin and trans-resveratrol or of trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene. In contrast, gloriosaols are direct derivatives of yuccaols (note that substituting by stilbenoid changes the absolute configuration of C-2 naringenin carbon to 2S). A putative mechanism for their biosynthesis is proposed taking into account key aspects of regio- and stereoselectivity. Yuccaol B and gloriosaol A showed in vitro moderate inhibitory effects against acetyl-/butyrylcholinesterases (AChE/BChE) with IC50 values of 43/81 and 45/65 µM respectively. The selectivity index values calculated from the IC50 values of BChE and AChE were 1.9 and 1.4. Molecular docking simulations showed their interaction with the peripheral anionic site of human AChE and the catalytic site of the human BChE.


Subject(s)
Flavanones , Yucca , Humans , Molecular Docking Simulation , Resveratrol
9.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364367

ABSTRACT

Iphiona mucronata (Family Asteraceae) is widely distributed in the Eastern desert of Egypt. It is a promising plant material for phytochemical analysis and pharmacologic studies, and so far, its specific metabolites and biological activity have not yet been thoroughly investigated. Herein, we report on the detailed phytochemical study using UPLC-Q-TOF-MS approach. This analysis allowed the putative annotation of 48 metabolites belonging to various phytochemical classes, including mostly sesquiterpenes, flavonoids, and phenolic acids. Further, zebrafish embryotoxicity has been carried out, where 100 µg/mL extract incubated for 72 h resulted in a slow touch response of the 10 examined larvae, which might be taken as a sign of a disturbed peripheral nervous system. Results of in vitro testing indicate moderate cytotoxicity towards VERO, FaDu, and HeLa cells with CC50 values between 91.6 and 101.7 µg/mL. However, selective antineoplastic activity in RKO cells with CC50 of 54.5 µg/mL was observed. To the best of our knowledge, this is the first comprehensive profile of I. mucronata secondary metabolites that provides chemical-based evidence for its biological effects. A further investigation should be carried out to precisely define the underlying mechanisms of toxicity.


Subject(s)
Asteraceae , Zebrafish , Humans , Animals , HeLa Cells , Plant Extracts/pharmacology , Phytochemicals/pharmacology , Phytochemicals/analysis , Chromatography, High Pressure Liquid/methods
10.
Molecules ; 27(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36234764

ABSTRACT

Pueraria lobata (Willd.) Ohwi is a legume taxon native to Southeast Asia and widely used in traditional medicine systems of that region. The therapeutic applications of the underground parts of this species (known as kudzu root) are related to its high content of isoflavones, mainly the characteristic C-glycoside derivatives. Within this group, the most explored compound both phytochemically and pharmacologically is puerarin. However, current scientific findings document important anti-biodegenerative effects for some of the minor isoflavones from kudzu roots. Therefore, the main objective of the study was to develop an original preparative method that allowed the efficient isolation of closely related hydrophilic daidzein C-glycosides, including mirificin, from vacuum-dried aqueous-ethanolic extracts of kudzu roots. For this purpose, the combined centrifugal partition (CPC) and flash chromatographic (FC) techniques were elaborated and used. The optimized biphasic solvent system in CPC, with ethyl acetate, ethanol, water, and 0.5% (V/V) acetic acid as a mobile phase modifier, enabled the purification and separation of the polar fraction containing bioactive isoflavones and ultimately the isolation of mirificin, 3'-hydroxy- and 3'-methoxypuerarin, puerarin, and daidzin using FC. The identity of isoflavones was confirmed using spectroscopic (UV absorption and nuclear magnetic resonance) and mass spectrometric methods. The determined purity of isolated mirificin was 63%.


Subject(s)
Isoflavones , Pueraria , Chromatography, High Pressure Liquid , Ethanol/analysis , Glycosides/analysis , Isoflavones/chemistry , Plant Roots/chemistry , Pueraria/chemistry , Solvents/analysis , Water/analysis
11.
Phytochemistry ; 203: 113350, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35973612

ABSTRACT

Defense-related metabolome traits in pine species after infestation by Sirex noctilio are largely unknown, despite, in most cases, trees being overwhelmed. Using LC-MS-based untargeted metabolomics, we revealed the systemic metabolic changes induced by this insect in 14-year-old Pinus radiata trees, the most affected species worldwide. An immediate metabolome alteration was expressed in needles after infestation, including the up-regulation of flavonols, flavan-3-ols, oxyneolignans, auxins, proline, and tryptophan, among others. The flavan-3-ols (catechin and procyanidin B1) suggested a rapidly induced photoprotection mechanism aided by diverting proline as an alternative substrate for respiration to compensate for the progressive chlorosis that degrades photosystems. Meanwhile, glutathione, glutamate, and ascorbate levels significantly dropped in needles, which may indicate the critical oxidative stress that trees had to face since the onset of the infestation. They were not fully replenished after long-term infestation, and redox homeostasis was probably not achieved, compromising tree survival. Nevertheless, a huge auxins overexpression detected in needles throughout the infestation may reflect tolerance against the premature senescence caused by the woodwasp venom. In contrast, the metabolome of wood tissues remained initially unchanged, although it seems to collapse after three months. Overall, the metabolomics strategy adopted in this work evidenced its usefulness in uncovering the fundamental roles of plants' chemical defense that govern interactions with specific stressors.


Subject(s)
Catechin , Hymenoptera , Pinus , Animals , Flavonols , Glutamates , Glutathione , Hymenoptera/physiology , Indoleacetic Acids , Proline , Trees , Tryptophan
12.
Molecules ; 27(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744815

ABSTRACT

Y. schidigera contains a number of unusual polyphenols, derivatives of resveratrol and naringenin, called spiro-flavostilbenoids, which have potent in vitro anti-inflammatory, antioxidant, and moderate cholinesterase inhibitory activities. To date, these compounds have not been tested in vivo for the treatment of neurodegenerative diseases. The aim of the present study was to evaluate the effects of both single spiro-flavostilbenoids (yuccaol B and gloriosaol A) and phenolic fractions derived from Y. schidigera bark on scopolamine-induced anxiety and memory process deterioration using a Danio rerio model. Detailed phytochemical analysis of the studied fractions was carried out using different chromatographic techniques and Nuclear Magnetic Resonance (NMR). The novel tank diving test was used as a method to measure zebrafish anxiety, whereas spatial working memory function was assessed in Y-maze. In addition, acetylcholinesterase/butyrylcholinesterase (AChE/BChE) and 15-lipooxygenase (15-LOX) inhibition tests were performed in vitro. All pure compounds and fractions under study exerted anxiolytic and procognitive action. Moreover, strong anti-oxidant capacity was observed, whereas weak inhibition towards cholinesterases was found. Thus, we may conclude that the observed behavioral effects are complex and result rather from inhibition of oxidative stress processes and influence on cholinergic muscarinic receptors (both 15-LOX and scopolamine assays) than effects on cholinesterases. Y. schidigera is a source of substances with desirable properties in the prevention and treatment of neurodegenerative diseases.


Subject(s)
Neuroprotective Agents , Yucca , Acetylcholinesterase , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Butyrylcholinesterase , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Neuroprotective Agents/analysis , Neuroprotective Agents/pharmacology , Phenols/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Scopolamine/adverse effects , Scopolamine/analysis , Yucca/chemistry , Zebrafish
14.
Molecules ; 27(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35164250

ABSTRACT

It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A-D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.


Subject(s)
Anticoagulants/pharmacology , Blood , Lamiales/chemistry , Plant Extracts/pharmacology , Anticoagulants/pharmacokinetics , Area Under Curve , Blood Platelets/drug effects , Chromatography, High Pressure Liquid/methods , Humans , Lamiales/metabolism , Mass Spectrometry/methods , Plant Extracts/pharmacokinetics , Plant Leaves/chemistry
15.
Molecules ; 26(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34443502

ABSTRACT

Two triterpene saponins, including a novel serjanic acid derivative, were isolated from Chenopodium hybridum L. (Amaranthaceae) aerial parts. Their structures were elucidated by a combination of spectroscopic methods (MS, 1D and 2D NMR). Both compounds were evaluated for cytotoxicity and selectivity on skin, prostate, gastrointestinal, thyroid and lung cancer cells. Their effect was dose and time-dependent with varied potency, the highest against prostate PC3 and melanoma WM793, where IC50 was lower than the reference drug doxorubicin. Structure-activity relationship is briefly discussed.


Subject(s)
Chenopodiaceae/chemistry , Glycosides/pharmacology , Triterpenes/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Cell Line, Tumor , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Proton Magnetic Resonance Spectroscopy , Triterpenes/chemistry , Triterpenes/isolation & purification
16.
Phytochemistry ; 190: 112861, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34325241

ABSTRACT

The study is based on phytochemical profiling and in vitro evaluation of biological effects of phenolic acid derivatives-rich Herniaria fractions, isolated from two rupturewort (Herniaria L.) species, i.e. Herniaria incana Lam. (syn. H. besseri Fisch. ex Hornem) and H. polygama J. Gay (syn. H. odorata). For the first time, the composition of phenolic compounds of these species was extensively evaluated by both LC-HR-QTOF-ESI-MS and Nuclear Magnetic Resonance spectroscopy (NMR). LC-MS analyses of H. polygama revealed 72 tentatively identified compounds, while H. incana - 63. Only 8% of the metabolites reported in this work have been previously described for Herniaria spp. Most of the identified specialized metabolites were cinnamic and benzoic acid derivatives. Phenolic fraction of H. incana herb contained flavonoids as well. A multi-step chromatographic separation of phenolic fractions from H. polygama yielded three known cinnamic and one benzoic acid derivates, and from H. incana - 4 known flavonoids and one previously undescribed, i.e. rhamnocitrin-3-O-[3-hydroxy-3-methylglutaryl-(1 â†’ 6'')]-[α-rhamnopyranosyl-(1 â†’ 2'')]-ß-glucopyranoside. Antioxidant properties of the examined fractions (1-50 µg/ml) were assessed in human blood plasma under the conditions of peroxynitrite-induced oxidative stress. Measurements of well-known biomarkers such as 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances and the ferric reducing ability of blood plasma revealed the protective effect of Herniaria fractions against oxidative damage to blood plasma components. Furthermore, the examined fractions effectively ameliorated the inflammatory response of the concanavalin A-stimulated human peripheral blood mononuclear cells (PBMCs). Additionally, cellular safety of the fractions was confirmed in PBMCs.


Subject(s)
Caryophyllaceae , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Leukocytes, Mononuclear , Plant Extracts/pharmacology
17.
Cancers (Basel) ; 13(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072003

ABSTRACT

AIM: The anti-glioma effect of lensoside Aß alone and in combination with sorafenib (pro-survival Raf kinase inhibitor) was evaluated for the first time in terms of programmed cell death induction in anaplastic astrocytoma and glioblastoma multiforme cell lines as an experimental model. Apoptosis, autophagy, and necrosis were identified microscopically (fluorescence and scanning microscopes) and confirmed by flow cytometry (mitochondrial membrane potential MMP and cell death). The expression of apoptotic (caspase 3) and autophagic markers (beclin 1) as well as Raf kinase were estimated by immunoblotting. The FTIR method was used to determine the interaction of the studied drugs with lipid and protein groups within cells, while the modes of drug action within the cells were assessed with the FLIM technique. RESULTS: Lensoside Aß itself does not exhibit anti-glioma activity but significantly enhances the anti-cancer potential of sorafenib, initiating mainly apoptosis of up to 90% of cells. It was correlated with an increased level of active caspase 3, a reduced MMP value, and a lower level of Raf kinase. The interaction with membrane structures led to morphological changes typical of programmed death. CONCLUSIONS: Our results indicate that lensoside Aß plays an important role as an adjuvant in chemotherapy with sorafenib and may be a potential candidate in anti-glioma combination therapy.

18.
Molecules ; 26(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668106

ABSTRACT

Tagetes erecta L. is a popular ornamental plant of the Asteraceae family, which is widely cultivated not only for its decorative use, but also for the extraction of lutein. Besides carotenoid representatives, which have been extensively studied, other important classes of secondary metabolites present in the plant, such as polyphenols, could exhibit important biological activities. The phytochemical analysis of a methanolic extract obtained from T. erecta inflorescences was achieved using liquid chromatography-mass spectrometry (LC-MS) techniques. The extract was further subjected to a multistep purification process, which allowed the separation of different fractions. The total extract and its fractions contain several polyphenolic compounds, such as hydroxybenzoic and hydroxycinnamic acid derivatives, flavonols (especially quercetagetin glycosides), and several aglycons (e.g., quercetin, patuletin). One of the fractions, containing mostly quercetagitrin, was subjected to two different antioxidant assays (metal chelating activity and lipoxygenase inhibition) and to in vitro cytotoxicity assessment. Generally, the biological assays showed promising results for the investigated fraction compared to the initial extract. Given the encouraging outcome of the in vitro assays, further purification and structural analysis of compounds from T. erecta extracts, as well as further in vivo investigations are justified.


Subject(s)
Antioxidants/pharmacology , Flowers/chemistry , Lipoxygenase Inhibitors/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Tagetes/chemistry , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Lipoxygenase/metabolism , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/isolation & purification , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rabbits , Structure-Activity Relationship
19.
Molecules ; 26(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530389

ABSTRACT

The Pulmonaria species (lungwort) are edible plants and traditional remedies for different disorders of the respiratory system. Our work covers a comparative study on biological actions in human blood plasma and cyclooxygenase-2 (COX-2) -inhibitory properties of plant extracts (i.e., phenolic-rich fractions) originated from aerial parts of P. obscura Dumort. and P. officinalis L. Phytochemical profiling demonstrated the abundance of phenolic acids and their derivatives (over 80% of the isolated fractions). Danshensu conjugates with caffeic acid, i.e., rosmarinic, lithospermic, salvianolic, monardic, shimobashiric and yunnaneic acids were identified as predominant components. The examined extracts (1-100 µg/mL) partly prevented harmful effects of the peroxynitrite-induced oxidative stress in blood plasma (decreased oxidative damage to blood plasma components and improved its non-enzymatic antioxidant capacity). The cellular safety of the extracts was confirmed in experimental models of blood platelets and peripheral blood mononuclear cells. COX-2 inhibitor screening evidently suggested a stronger activity of P. officinalis (IC50 of 13.28 and 7.24 µg/mL, in reaction with synthetic chromogen and physiological substrate (arachidonic acid), respectively). In silico studies on interactions of main components of the Pulmonaria extracts with the COX-2 demonstrated the abilities of ten compounds to bind with the enzyme, including rosmarinic acid, menisdaurin, globoidnan A and salvianolic acid H.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Peroxynitrous Acid/adverse effects , Phenols/pharmacology , Plasma/drug effects , Pulmonaria/chemistry , Computer Simulation , Cyclooxygenase 2/chemistry , Cyclooxygenase 2 Inhibitors/chemistry , Humans , In Vitro Techniques , Lactates/chemistry , Lactates/pharmacology , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Oxidative Stress/drug effects , Phenols/chemistry , Phytochemicals , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plasma/chemistry
20.
J Ethnopharmacol ; 269: 113739, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33359854

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Cleomaceae family is known for its richness in secondary metabolites and different Cleome species are used in folk medicine. Cleome amblyocarpa and Cleome arabica are medicinal herbs used in Tunisia and other North Africa countries to treat various diseases such as diabetes, rheumatism, colic, pain and digestive disorders. AIM OF THE STUDY: To our knowledge, few data are available about the nutritional value, phytochemical components and biological effects of C. arabica and C. amblyocarpa cultivated in Tunisia. For this reason, the present survey aimed to determine the nutritional value, bioactive compounds and pharmacological properties of the leaves of these two species of Cleome. MATERIALS AND METHODS: To characterize and determine the bioactive compounds in both extracts of leaves of Cleome species, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used. The various nutritional parameters were analyzed, in particular the amounts of protein, carbohydrates, ash, fiber, and total lipids. Vitamin E and fatty acid profiles were also evaluated by HPLC-DAD-FLD and GC-FID, respectively. The acute toxic effects of leaf extracts in mice at concentrations of 100, 500 and 800 mg/kg body weight have been investigated. The anti-inflammatory effect of leaves extracts was examined by means of the in vitro and in vivo models. The in vivo anti-inflammatory test was assessed by means of the carrageenan induced paw edema in rats. For the in vitro anti-inflammatory assay, the red blood cells membrane stabilization and protein denaturation methods were employed. The analgesic effect of hydroalcoholic extracts of leaves was also assessed by acetic acid induced writhing model in mice. RESULTS: The phytochemical composition and the nutritional values of the leaves of C. amblyocarpa and C. arabica were determined. Our results revealed that the leaves of C. amblyocarpa are rich in flavonoids and glucosinolates. On the other hand, these latter metabolites are not present in the C. arabica extract and the leaves are characterized by the presence of flavones, methoxyflavones and their glycosides. Our findings revealed that the leaves of the two species contain a potential quantity of vitamins; proteins, carbohydrates and dietary fiber, and their hydroalcoholic extracts indicated substantial anti-inflammatory and antinociceptive activities in all the tests. Additionally, the data from the acute toxicity test proved that the leaf extracts did not cause any mortality or signs of toxicity in animals at doses up to 800 mg/kg CONCLUSIONS: The results obtained in this investigation demonstrated that the leaves of C. arabica and C. amblyocarpa are a valuable source of nutrients and active substances. Our observations support the traditional utilize of these two Cleome species for the treatment of painful diseases and as a source of natural anti-inflammatory agents.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Cleome/chemistry , Hyperalgesia/drug therapy , Inflammation/drug therapy , Plant Extracts/pharmacology , Acetic Acid/toxicity , Africa, Northern , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Behavior, Animal/drug effects , Carrageenan/toxicity , Chromatography, Liquid , Edema/chemically induced , Edema/drug therapy , Erythrocyte Membrane/drug effects , Fatty Acids/analysis , Female , Hyperalgesia/chemically induced , Inflammation/chemically induced , Male , Mice , Nutritive Value , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Protein Denaturation/drug effects , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Vitamin E/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...